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Abstract. In this paper, we propose to study the influence of different learning 
mechanisms of social behaviours on a given multi-agent model (Sibertin-Blanc 
et al., 2005). The studied model has been constructed from a formalization of 
the organized action theory (Crozier and Friedberg, 1977) and is based on the 
modelling of control and dependency relationships between resources and 
actors. The proposed learning mechanisms cover different possible 
implementations of the classifiers systems on this model. In order to compare 
our results with existing ones in a classical framework, we restrain here the 
study to cases corresponding to the prisoner’s dilemma framework. The 
obtained results exhibit a variability about convergence times as well as 
emergent social behaviours depending on the implementation choice of 
classifiers systems and on their parameters. We conclude by analysing the 
sources of this variability and by giving perspectives about the use of such a 
model in broader cases. 

1   Introduction 

The way social actions are coordinated by and among social actors has been a 
source of inspiration for different theories in very different domains. For instance 
game theory in economics, their application in ecology (Dugatkin, 1984) and other 
related theories either in sociology or even in psychology. In a larger perspective, we 
choose as a research project to investigate the sociological theory of organized action 
proposed by Crozier and Friedberg (1977), on the one hand to improve this discursive 
theory by proposing a formalisation of it and on the other hand to apply this theory to 
model different social phenomenon appearing in organizational contexts. The work 
conducted on this project resulted in a proposed formalization of this theory (Sibertin-
Blanc et al., 2005), a meta-model, that we expose briefly in the first section. 

Taken for granted this model, we are then searching to improve it by including 
social learning mechanisms in order to take into account the strategic rationality of the 
actors. We then focus on classifiers systems as a way of implementing social learning. 
Such a learning mechanism, even simple, leads to different implementation choices in 
order to adapt it to the existing model. Different possibilities being possible and 
realistic, we decided to study those alternatives in order to make up our mind. We 
present those alternatives in the second section as well as their sociological 
interpretations in the frame of the organized action theory. 
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Given those learning mechanisms, we are searching to understand in each cases, 
which collective strategies could emerge and why. We then proceed to 
experimentations on each alternative (section 4). In order to make things 
understandable at a first attempt, we choose to focus on the particular framework of 
prisonner’s dilemma, which is reproducible by our model. We then choose a two 
players game and we make vary the parameters corresponding to the share of 
resources among the actors. 

The experimentations exhibit a variability of collective behaviours depending on 
the chosen parameters as well as a phase transition at the tipping-point corresponding 
to the individual transition from dependency on the resources and control of those 
resources. Results are given section 5. In section 6, we provide conclusions 
concerning the comparisons of the different learning mechanisms as well as the 
observed phase transition. We conclude by giving some of the steps following this 
work. 

2   Formalization of the Organized Action sociological theory 

A formalization of the Sociology of the Organized Action (SOA) leads to consider 
that constitutive elements of a social system are of the three different types shown in 
Fig. 1: the Actor, the Relation and the Resource. 
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Fig. 1. Model of the structure of a social system in the frame of the SOA (using the 
Entity/Association formalism). 

A Resource can be the support of one or more Relations associated to Actors who 
are linked to it, either because they control the Relation or they depend on it. Each 
actor puts stakes and receives in return a pay-off for each one of the Relations he is 
implied in. The actor who masters a Resource (by the mean of a Relation he controls) 
decides of the distribution of the pay-offs among the actors who depend on this 
Relation. The Resources of a CAS are the necessary elements for the organized 
action, their availability being required in order to make some action. Every Resource 
is mastered by one or more Actors who decide about its availability and therefore 
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influence the action capability of the Actors who need it. Each Resource leads to the 
creation of one or several Relations. A Relation is unbalanced as a unique Actor 
controls this Relation while other Actors depend on this Relation as they need this 
Resource to achieve their goals. Every Actor masters one or more Resources and then 
possesses some freedom to act that he exerts by means of the Resources he controls. 

Each Actor distributes his stakes on each one of the Relations he participates to, 
either by controlling them or depending on them, depending on the importance of the 
Resource in regards to his objectives. The Actor controlling a Relation is the one who 
determines the pay-off other actors received from the Resource. The pay-off 
corresponds to the quality of the Resource availability; more or better the usability of 
the Resource by an Actor, higher his pay-off for this Relation. 

The distribution of pay-offs and stakes on numerical scales enables, applying 
simple operations, to aggregate those values in synthetic and significant values. One 
can graduate the stakes on a scale between 0 and +10, and the pay-offs with the 
correspondence –10 to +10. As evidence, these numerical values just enable to 
perform comparison among them. To do so, we have to normalize the sum of the 
actors’ stakes and then attribute the same amount of stakes to each actor for him to 
distribute on the relations he participates to. This normalization comes down to grant 
the same investment to each actor, the same possibility of personal implication in the 
social relations game.  

A particularly significant value is, for each actor, the sum on the whole set of 
Relation he is involved in, of a combination between his stake and the resulting pay-
off he receive. We name this value the actor’s satisfaction (rather than utility because 
it is more linked to a bounded rationality context). It expresses the possibility for an 
actor to access to the resources he needs in order to achieve his objectives, and then 
the means available for him to achieve these objectives. A linear version consists in 
considering the sum, on every relation he is involved in, of the stake by the pay-off: 

 

Satis(a) = �r/ a participates to r stake(a, r) * pay-off(a, r) 

 
To obtain or preserve a high level for this satisfaction is a meta-objective for every 

actor, as this level determines his possibility to achieve his concrete objectives. The 
strategic characteristic of an actor’s behaviour leads him, by definition, to aim and 
achieve his objectives and then to obtain an acceptable value (if not the optimum) for 
his satisfaction, that becomes the criterion for learning mechanisms we expose in the 
following section. 
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3. The learning mechanisms implemented 

After the claim by Rosaria Conte (2001) among others for integrating so-called 
« intelligent » social processes in the agents when doing agent-based social 
simulations, several papers (Conte & Paolucci, 2001 ; Flache & Macy, 2002 ; 
Takadama 2003) proposed and implemented some learning algorithms to be used by 
agents. 

In this paper we propose to explore two models for social learning using the 
classifiers mechanism (Holland et al., 2000) for the selection of the action; it is based 
upon the learning of behavioural rules by test-errors and reinforcement of the rules 
depending on the results they produce. Recent works about reinforcement learning 
models exhibit that a reduce set of parameters and hypothesis may cover hidden 
important theoretical assumptions (Macy & Flache, 2002). Therefore we decide to 
follow the Axelrod’s (1997) famous maxim : “Keep it simple, stupid”. Thus, each 
model is a naive answer aiming at validating or not a less naive question on social 
learning. 

 
Do 

For each actor a 
Satisfaction_computing()  

For each relationship r activated by a at time t 
Retribution_Process(elected_rule) 
Oblivion_Process(r) 

For each relationship r controlled and activate by a,  
[Mr] ← Matching (r) 
er ← Electing_Process (Mr) 
if er = null, then er ← Covering_Process(r) 

For each actor a 
Act(a, er) 

Until the end of the simulation 

Table 1 Pseudo code of the Classifier System algorithm used in the social learning models 

Following the rationality hypothesis implied by the Sociology of the Organized 
Action, the two models are based on  the standard three phases cycle: perception of its 
own state and of the environment; selection of an action to perform, according to its 
expected effect on the gap between the current and the goal state, execution of this 
action.  

Each model is a kind of Learning Classifier System (LCS) without genetic 
algorithms nor bucket brigad retribution process (Table 1). The main processes 
involved, namely retribution, oblivion and matching are respectively governed by 
three parameters: reward acts for the positive or negative reinforcement of the rules 
depending of ( )satisfaction∆ sign; oblivion is a factor of reward used to weakened 
the strength part of each rules and erase useless ones; dmin enables an agent to match 
a perceive situation with existing situations of the learned rules. The election process 
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selects the matching rule with the highest strength and if there is no elected rule the 
covering process generates a random one. 

The two models differ essentially in the way satisfaction is computed and involved 
in the reinforcement procedure of the learned rules. 

3.1. 1st solution: Independent Multi-Satisfaction CS 

How in a social environment, a learning actor must adapt itself from the others 
behaviours? We want an actor able to adapt to different actors but also to different 
kinds of relationship (friendship, employement, family…). This disctinction in 
relationships is embedded in the meta-model expressiveness as the concept of 
relation. Therefore the base hypothesis underlying this first model is that an agent 
adapts itself within each of its relation so that it can adapt itself in various kinds of 
relationships independently.  

We thus propose to associate a satisfaction to each controlled relation and to 
retribute only the associated elected rules. Each actor a’s satisfaction associated to a 
relation r is expressed as: a,r a,r a, rSatisfaction = stake pay-off∗ . We will refer to this 

kind of CS as Independent Multi-Satisfaction CS or IMSCS. 

3.2. 2nd Solution: Global Satisfaction CS 

As exprimed by Molm, many social scientists have stressed out the point that 
satisfaction may be specific (IMSCS) or global. We would now address this second 
point by a question pointing to Molm’s definition of satisfaction: how can we make 
global “cognitive evaluations in which actors compare actual to expected outcomes”?  

We propose a raw answer by aggregating each specific satisfaction as defined in 
the IMSCS model and by summing up them into a global satisfaction. In such a way 
an agent will reinforce all the elected rules in the same way. In this Global 
Satisfaction CS (GSCS), the satisfaction is given by: 

a a,r a,rr/ a participates to r
Satisfaction  =  stake *pay-off�  

4. Experimentations conducted 

In order to validate our model we propose to used a cross validation as proposed by 
Takadama in regard to a famous game well-known by game theorists: the prisonner’s 
dilemma (PD). Althougth Takadama work has been a strong and rich influence in 
conducting our researches, our experimental protocol is not quite the same. First, we 
proceed using an exhaustive space parameters’ exploration of the learning models 
(oblivion/reward, dmin) and of the social model (stakes). This exploration goes beyond 
the constraints of the prisonner’s dilemma and enables to situate the results in a wider 
area. Secondly, the agent’s representation is  the same for every models. Finally, the 
criteria used to validate the models is not the one of a perfect rationality but, with 
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respect to Simon (1996), a bounded rationality, that implies imperfect actors but not 
foolish one. 

4.1. The Prisonner’s Dilemma 

Description of the prisonner dilemma game 
The prisonner’s dilemma was first proposed by two mathematicians Merrill Flood 

and Melvin Dresher in 1950. It is exposed as a game where two players have the 
choice between two actions: cooperate or defect. Players earn pay-offs depending on 
the choices of the both players, as shown in Table 2.. That is if the two players 
cooperate (CC) they will receive the reward for the cooperation (R); if both defect 
they will be punished for the defection (P); and if one cooperates whilst the other 
defects, he is the sucker (S) and the other will ear the retribution of his temptation (T).  

 
 c d 
c R, R S, T 
d T, S P, P 

Table 2. The pay-offs matrix for the prisonner dilemma game 

The dilemma is constrained by the fact that temptation is more profitable than 
mutual cooperation, that pays more than punishment, that is more valuable than the 
sucker: T > R > P > S. Therefore the dilemma is shown when an actor is tempted to 
defect and he infers that other behaviour could be the same as him, so he would prefer 
to cooperate but what if the other defects. An other inequation, 2 R > T + S, encourages 
cooperation by giving a prior account to mutual interest than to selfish one. 

The classical PD game is of minor interest compared to its iterated version where 
each player can potentially apply different actions over time and where the pay-offs 
are summed up. The iterated version of the PD has been widely explored and exposed 
(Hoffman 2000, Delahaye 1992, Macy & Flache 2002) since Axelrod’s works (1984). 
In his tournaments, Axelrod has found many interesting emergent strategies those 
most famous is the Tit-forTat one: a simple, robust and ethic strategy. 

Adapting the sociology of organized action formalization to PD game constraints 
The SOA formalization expressivity does not directly match the PD game. So we 

will pesent here how we make a projection from our model to a PD game context. 
Let be two actors, a1 and a2, participating in two relations, r1 and r2, such that 

each actor controls one relation. Let the sum of the stakes for each actor be 
normalized to 10. Let be sr,a and pr,a ∈ [0;10] respectively the stake and the pay-offs 
of an actor a for a relation r. Let be give and take the possible actions each controler 
can exert on a relation.  

We now define the effect of an action action applied by the controler c of a relation 
r as effectr(action)= , ,{ , }r c r dp p∆ ∆  such that ,r cp∆ and ,r dp∆  are respectively the pay-

off increments of the controler c and the actor dependant d of the relation r. Let be 
effect(give)= effect-1(take)={-1,1}. 



  a1 
  give take 

R1 = sr2,a1 - sr1,a1 T1 = sr1,a1 + sr2,a1 give 
R2 = sr1,a2 - sr2,a2 S1 = - sr1,a2 - sr2,a2 
S1 = -sr1,a1 - sr2,a1 P1 = sr1,a1 - sr2,a1 

a2 
take 

T2 = sr2,a2+ sr1,a2 P2 = sr2,a2 - sr1,a2 0 2 4 6 8 10
0

2

4
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Fig.2 Pay-off matrix for the specified CAS; Graphics of  the fully and quasi-satisfied PD 
constraints (X-axis: sr1,a1, Y-axis: sr2,a2). We do not have to represent sr2,a1 nor sr1,a2 because 
of the stake normalization. White squares represent the fully satisfied PD constraints while grey 
ones represent the quasi-satisfied PD constraints. 

In Fig. 2, the matrix gives the pay-offs for the defined CAS. At the difference of 
the classical PD pay-offs we obtain a potentially different pay-off for each actor. The 
graphic in Fig. 2 gives, in white, the cases where the PD game constraints are fully 
satisfied and, in grey, the cases where they are quasi-satisfied (R1 > S1 > T1 > P1, R2 
> S2 > T2 > P2, R1+R2 > T1+S2 and R1+R2 > T2+S1). 

4.2. Experimental design 

The simulations where products with the same experimental design for the both 
models, that is the IMSCS and the GSCS. For each one, we have conducted a 
systematic exploration for two kind of parameters which are present in both models. 

 The first set of parameters directly concerns the sociological model. It is 
composed of the stake of each actor for the relation he controls. We have not explored 
the stake of each actor for the relation he is dependant because the stakes 
normalization directly constraints the value of the later from those of the former. In 
order to accelerate the computation of the large amount of runs we have take into 
account of the symetric nature of the stake matrix (Fig.3) we want explore. Thus, we 
only show the computed part of the symetric matrix. This matrix permits us to present 
many observations for all the possible integer values for all the implied stakes with 
respect to the previously mentionned optimisation. Values in the matrix are given by 
greyscale enabling an observer to quicly acquire and compare all the avaiable 
information: 11*(11+1)/2 datas for each matrix. We sometimes apply a contour filter. 

 

      
Fig.3 Examples of  data observations in the stake matrix with and without contour filter 
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The second set of parameters concerns the learning models. We explore the dmin 
and the oblivion/reward ratio as follow. The dmin is an essential parameter permitting 
to explore and to learn from situations in the space of phases1. The greater is dmin the 
less thick is the exploration. The possible values we have choosen to explore dmin are 
graduated on a logarithmic scale from 0, 20,… to 25. As an illustration the 25 upper 
bound value leads the agents to consider each position in the space of phases as 
belonging to the same situation; whilst the opposite bound value, 0, will lead to 
considere each position as a new situation and will thus multiply the learned rules. 
The oblivion/reward ratio is also essential because it permits to renew the rules 
population those situation part is matching the current situation. A high ratio value 
will conduct to a quick renewing of the population, and at the opposite a low ratio will 
slow down the adaptation of the agent. The ratio value belong to [0;1] and is 
incremented with 0.2 step, that is we have 6 values. The reward is fixed at 5. 

We have produced 50 runs for each parameter quadruplet {stake_of_r1_controler, 
stake_of_r2_controler, dmin, oblivion/reward}. For each model and for each 
parameter quadruplet we have observed the following values: the mean and the 
standard deviation for the convergence within the limits of 200 steps, and the 
occurences of a convergence  toward a CC (give_give), CD/DC(give_take/take_give), 
DD(take_take) situation. 

Finally, all the simulations have been implemented under Java, and most of the 
data analysis has been made under Mathematica. 

5.Results 

5.1. Results for the Independent Multi-Satisfaction Classifier System 

The Fig. 4 shows the results for the ICSCS model. The left and right matrixes 
respectively present the observations for the mean and the standard deviation of the 
convergence.  
How to read this five dimensions representation ?  

• Each main matrix contains the previously introduced pay-offs matrixes.  
• The X-axis of the main matrice represents the dmin parameter while the Y-

axis represent the oblivion/reward ratio.  
• The greyscale semantic for the mean convergence is dark grey for a quick 

mean convergence to white for the upper limits of 200.  
• The greyscale convergence for the standart deviation is black for a zero 

deviation and white for deviation upper 100. 
 

                                                           
1 More precisely it is a projection of the space of phases on the individual stakes and pay-offs 

dimensions. 



 
Fig.4 Observations of the mean and standard deviation of convergence. 

 
We can observe that the mean convergence is decreasing with the dmin parameter 

while the oblivion/reward ratio seems to have no effect on it. The convergence is 
generally quite quick. In every cases the standard deviation is near or equal to zero. 

 

             
Fig.5 Observation of the occurrences of learning the different action pairs. 

The Fig.5 present the observations of the occurences of the caracteristic situations 
resulting in the social learning of the action pairs CC, DC and CD/DC. We only 
shows the part of the pay-offs matrixes which validates the fully and quasi-satisfied 
PD constraints as shown in Fig.2  where sr1,a1, sr2,a2 ∈[1;5]. The greyscale semantic is 
given by the application [black; white]→[0 occurrence; 50 occurences]. We can 
clearly and only observe that every cases give place to a DD learning for every runs. 

5.2. Results for the Global Satisfaction Classifier System 

The GSCS seems to give a largest variety of results than the IMSCS. As we can 
observe in the mean matrix, on the left of Fig. 6, that the dmin parameter globally 
decrease the time to converge as it increase,  and that the oblivion/reward ratio also 
speed up the convergence as it is valued between 0.2 and 0.6. It also appear on the 
rigth matrix of standard deviation that the dmin decrease have a clear tendance to 
increase deviation. So, globally and for a given parameter quadruplet, agents take 
many ways for co-adaptate themselves, sometimes it is quick and sometimes it is not. 
An other observation present in both the mean and the standard deviation matrixes is 
a distinct phase transition which strangely appears in the area where the PD game 
constraints are fully or quasi-satisfied. The convergence in this region is clearly more 
slow and more various than in other ones. 
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Fig. 6 Observations of the mean and standard deviation of convergence. A clear transition 

phase appears in the area of fully and quasi-satisfied PD game constraints. 

By observing the occurences of action pairs in Fig. 7 it globally appears that DD 
learning is more frequent. If we make a more precise and specific analysis we can 
notice that: the CC pairs emerge more frequently as the dmin value is strictly upper 8 
and the oblivion/reward rate increases; the DD pairs emerge more frequently as the 
dmin value is strictly upper 1 and the oblivion/reward rate decreases; the CD emerges 
more frequently as the dmin value is under 16 and the oblivion/reward rate increases. 

 

     
Fig. 7 Observations of the occurrences of learning the different action pairs 

The final global observation is that CC is the globally less easy action pair to learn. 
Our exhaustive exploration permits to chose the adequate values of dmin and the 
oblivion/reward ratio to palliate the problem. But the choice of these values has a high 
cost in the reactivity to adapt to perturbation, because they imply the stagnation of the 
population rules. Althougth in the proposed PD game there are no such perturbation 
and the solution is acceptable. 

 
 



Cooperation is not always so simple to learn      11 

6.Discussion 

6.1.Comparison of IMSCS and GSCS 

The two proposed learning systems are naive answers to complex questions. We 
still not have the rigth answer to the generally addressed question of what is 
satisfaction and what is its role in agent learning processes. Althougth we have 
proposed to validate the rationality of our imperfect agent models by confronting 
them in the context of the prisonner dilemma game. We also have systematically 
explorated the space of phases and thus the emergent potentialities of our models. 

With regard to the bounded rationality and only in this PD context, it is clear that 
the IMSCS exhibits a quite straightforward irrationality in the way he adapts himself 
only to the relations he controls. And of course it is not validated because he can only 
learn to defect. But it could be more pertinent, and thus reused, in other contexts. 

The GSCS exhibits good qualities to be a serious candidate to the position of 
bounded rational strategic actor in a PD game. It can learn all the kind of action pairs. 
Its main problem was the real difficulties to learn cooperation as quickly as the other 
possibilities. But we can partially correct some of its imperfection by selecting the 
good values for different internal parameters. So this model is validated.  

6.2.Explanation of the observed phase transition 

The observed threshold correponds to the shift from a mutual dependence situation, 
where each actor need the usage of a non controlled ressource, to an asymetric 
dependence or an independant situationAs an evidence, without motivation to 
cooperate agents prefer an other, and thus quickest way to act. For example the game 
with the same stake for each relation and each actor will lead to T1 > R1 = P1 > S1 
and T2 > R2 = P2 >S2 which present a Nash equilibrum for D. Without giving all the 
details, it will quickly converge to learn DD, and sometimes, if dmin is high enougth, 
to learn CC. If sr1,a1 > 5 > sr2,a2, the PD pay-offs constraints are respected for a2 but 
the fact that T1 > P1 > R1 > S1 is a real motivation for a1 to defect. It is the same 
motivation for both agent if sr1,a1 > 5 > sr2,a2. 

7.Conclusion  

As an evidence, the presented case is constraining considering the learning 
mechanisms that could be proposed. Following works by increasing the number of 
actors or by using different oragnisation of the relations between actors and resources 
could lead to suggest other learning mechanisms. But in this case, as a result of our 
study, the second mechanism is more adequate to our modelling purposes. 

We have also to mention that the proposed model, as a formalisation of the 
sociological theory of organized action, has a far broader spectrum of application than 
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the one presented in the paper. Among others, we applied or derived this meta-model 
on the study of the emergence of territorial coalitions (Mailliard et al., 2005), to 
classical cases from the strategic analysis literature as the Trouville case (Mailliard et 
al., 2003). 

Moreover, this interdisciplinary work even presented as the use of computer 
sciences as tools for sociological theories, benefits also to computer sciences as a 
source of inspiration in order to propose original coordination mechanisms among 
computational agents (Sibertin-Blanc et al., 2005). 
d’utiliser ce méta-modèle comme modèle de coordination pour les systèmes multi-
agents (Sibertin-Blanc et al., 2005). 
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