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Abstract: Robustness against failures and attacks  is an important characteristic for real networks.  
Although methods have been proposed making networks more resistant, they are often designed to  
rehash networks before issues occur. In this paper, we investigate three dynamic methods making  
the network being able to repair itself while under massive attacks and failures. We consider two  
different topologies, Erdos – Renyi random graphs and Barabasi – Albert scale-free networks, and  
find out that a local strategy is able to maintain, at least for a moment, the network relatively  
connected. We believe this rewiring algorithm interesting because it might be not very difficult to  
implant in real networks and it provides a dynamic response while other arrangements are taken to  
answer the threat or the issues.
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1.Introduction
The point of view on complex systems as networked structures of interacting elements is 

wide  spreading.  Analysing  very  different  corpus  in  different  disciplines  (biology,  computer 
sciences, traffic and so on...) some shared properties have been identified (scale-free structure for 
instance) on static structures. The modelling of the formation of such structures is still a key-point, 
even if some proposal exist (preferential attachment dynamics by Barabasi and Albert) as well as 
many works concerning dynamics occuring on networks (for instance information spread or opinion 
dynamics or cooperation dilemma). Among those latter works, Barabasi and Albert (2001) proposed 
to study the impacts of failures and attacks on scale-free networks. Their main finding was that 
concerning random failures, scale-free networks are much more robust than random ones and that 
concerning intentional attacks, random networks are much more robust than scale-free networks. 
However, not much works exist concerning possible robust solutions in order to repair networks 
after an attack or a failure and their consequences on the structure of the underlying network itself. 
In this paper, we propose to study three simple strategies for the reparation of networks after an 
attack or a failure ; to study the efficiency of those solutions applied either on random or on scale-
free networks and to study the impacts of those strategies on the structure it is applied on, as when 
applying a repairing strategy you necessarily modify the network and potentially its macroscopic 
properties. Section 2 will give an overview of related works in the field. Section 3 presents the 
models we use and section 4 presents the results we obtained from simulations. The final section 
discussed the overall approach and proposes some further steps to our research.
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2.Related works
Numerous systems in the real world can be represented as networks where nodes are the 

components  and  edges  symbolize  an  interaction  between  two  components.  Analysing  those 
networks a shared property that is often identified is the scale-free property of the distribution of 
links per nodes. Some examples are the  World Wide Web (Barabasi &al. - 1999), citation networks 
(Redner – 1998), cellular (Jeong et al. - 2000) or protein networks (Scala, Amaral & Barthelemy – 
2001). In order to understand mechanisms that produce such structures, various models have been 
proposed so far. The first of them is probably the random-graph model of Erdos-Renyi (Erdos & 
Renyi – 1959). This model defines a random graph as  N nodes connected by  n edges randomly 
chosen from the  N(N-1)/2 possible ones. In this paper, we used the alternative binomial model, 
starting with N nodes and every pair of nodes connected with a probability  p. Such graphs have 
some significant properties like the degree distribution following a Poisson law (Erdos & Renyi – 
1959 ; Bollobas – 1985), the low diameter compared to the one of equivalent regular graphs (Chung 
and  Lu  –  2001),  efficiency  (Latora  and  Marchiori  –  2001) or  the  low  clustering  coefficient 
compared to either random or small world networks (Watts and Strogatz – 1998). Moreover, they 
give an opportunity to set up a comparison with real networks (Newman – 2001). 

Since Barabasi and Albert (1999), it is known that many real networks degree distribution 
follows a power-law and that random graphs are not able to render either the scale-free or the small 
world characteristics of those real  networks. Another model ensuring a short  path length and a 
relatively high clustering coefficient is the Watts-Strogatz small world model (Watts and Strogatz – 
1998). But this model cannot reproduce the power-law degree distribution of many real networks. 
To render this, Barabasi and Albert (1999) have proposed two generic mechanisms responsible of 
the scale-free networks emergence : growth and preferential attachment, giving a new vision of the 
network study.

Network analysis is a wide field of investigation. As they offer dynamical processes, they 
can be useful to determine and understand some dynamical features in the real world. Within this 
field, the robustness of networks against attacks and failures is one of interest for us in this paper. 
Networks like the Internet are often disturbed by router failures (Barabasi - 2002), and we can 
imagine that major troubles could occur if you put down the central points of the Internet or of a 
telecommunication network. Therefore it is important to propose efficient repairing strategies. The 
major use of such solutions is in computer science with networks such as peer-to-peer networks or, 
globally,  the Internet.  But  we can also envisage some suitable  solutions for telecommunication 
networks. Indeed, theses networks can undergo some accidental failures (local cut, overload, ...)  or 
natural local issues (storms, earthquakes, ...) that we can take into account in our model as random 
failures.

It is known that scale-free networks are robust against failures but highly vulnerable against 
attacks, i.e. when the hubs are preferentially targeted (Barabasi - 2000). On the other hand, it has 
been shown that random networks have a similar tolerance to failures and attacks. Furthermore, we 
can say that the robustness of a network to failures and attacks depends on its topology (Crucitti and 
al. - 2004).

To avoid those troubles,  responses have been envisaged,  mainly the modification of the 
network topologies to improve network robustness (Beygelzimer and al. - 2005 ; Moreira and al. - 
2008). The idea is to prevent attacks damages by modifying the edges. However, in real networks, 
you cannot always rehash a network before an attack or a failure occurs. This happens in most of 
the  real  telecommunication  networks  where  algorithms  are  settled  up  to  prevent  failures  or  to 
compensate the loss (Kuhn and al. - 2005). Csardi and al. (2004) have proposed a solution where 
the  network  reacts  immediately after  the  disappearance  of  a  node.  On random networks,  their 
second neighbours rewiring strategy seems to be a good solution, allowing the network to grow 
again, even facing numerous severe attacks (a result that we have not been able to reproduce). In 
our paper, we examine results on both random graphs and scale-free networks.



3. Models description
We first describe the models we used for the underlying graphs and in the next section the 

model we used to simulate failures and attacks on these graphs.

a) Graph Models

For some simplicity reasons and aiming at comparing our results with existing approaches, 
we only considered undirected and not weighed networks in this paper. We used two different graph 
models. First, we used the Erdös-Rényi random graph model (Erdos and Renyi, 1959), constructed 
from an initial set of N unconnected nodes and adding K edges between pairs of randomly chosen 
nodes, avoiding the repetition of links and self-loops in the network. If the sparseness condition is 
verified, i.e.  K <= N2, the model provides a Poisson distribution of nodes’ degrees. Second, we 
used scale-free networks, built using the Barabasi-Albert preferential attachment model (Barabasi 
and Albert, 1999). In this latter, we first draw an initial set of fully-connected nodes and then we 
iteratively add a new node at each iteration and connect it to the existing network using preferential 
attachment, i.e. the probability for the new node to be linked to an existing node depends linearly on 
the number of links of this node. According to Barabasi and Albert, this model results in a graph 
exhibiting a power-law distribution of nodes’ degrees.

b) Failure and Attack

In this paper, we study the efficiency of rewiring strategies after failures and/or attacks on 
those two different types of networks. By failures, we mean the random suppression of a node in the 
network.  It  renders  real  phenomena  like  accident/shut-down on a  telecommunication  or  a  P2P 
network. On the other hand an attack corresponds to the removal of a node having a higher degree, 
representing, for instance, an intentional attack over a network where the attacker (hacker) wants to 
make as much damage as possible. Some stochastic heuristics enable to easily find such nodes 
without having to know the whole structure of the network. In this paper we adapted the heuristics 
proposed by (Cohen & al., 2003), i.e. in order to attack nodes with a higher degree, the attacker 
chooses first a random node from the whole network, and then a random neighbour of this node. As 
the final attacked node has a probability kpk of having a degree k, where pk stands for the degree 
distribution of the network. It results in a more probable attack of node having a higher degree. 

c) Rewiring strategies

When an attack occurs, the neighbours (we call them the  affected nodes) of the  attacked 
node (cf. Fig.1a) act as so to try and keep the whole network connected. Here, we consider three 
possible strategies: A) the random rewiring (cf. Fig.1b) where affected nodes  randomly connect to 
other nodes in the network; B) the greedy rewiring strategy (cf. Fig.1c) where affected nodes try to 
connect to a high degree neighbour of a random neighbour; C) the second neighbour strategy (cf. 
Fig. 1d), proposed by Csardi and al. (2004) where affected nodes attempt to connect themselves. 
Intuitively, we can say that the first strategy will keep the random graph unchanged while a scale-
free  network  will  have  the  tendency to  become a  random graph quite  rapidly.  For  the  second 
strategy, we can easily say that it won't avoid the breaking of a random graph, even less for a scale-
free network because there is no way to reconnect separate parts of the graph. The third strategy 
tries to conserve the structure of the network by connecting affected nodes among each others.

To study the resulting topology of a network after a massive amount of attacks or failures 
and using one of the rewiring strategies, we keep the number of nodes constant. So as soon as there 
is a deleted node in the network, we add a new one to it. The connection of the new node to the rest 
of  the network depends on the tested structure.  As for a  random graph the new node will  get 
connected to a randomly chosen one, in a scale-free network the new node will connect to a node 
with higher degree. Such a solution will avoid the graph to collapse after some attacks because all 
nodes were deleted.



d) Indicators used

There is a lot  of valuable properties like average or characteristic path length,  diameter, 
clustering coefficient and others, each one allowing to study some particular characteristics of the 
network (Newman and al. - 2006). We have chosen to consider the size of the largest connected 
component. This is quite a basic indicator but it renders quite well the idea of how healthy or robust 
the network is either to failures or attacks. Due to the construction methods, the initial size of the 
component can be N in case of a scale-free network and about 0.9N in case of a random one. This is 
because in a scale-free network, each new node will connect to the existing network so no node can 
be isolated. Whereas in a random graph, we chose pair of nodes to build the graph and there is a 
probability to leave some nodes alone but it is assumed that there is a phase transition in random 
graph with increasing the edge density at  which a  giant component  forms. For a large enough 
degree, this component fills a large portion of the graph while all other components are relatively 
small.

Figure 1a: The attacked node is  
the red one, the affected nodes 
are the black ones

Figure 1b: Random rewiring (A) 
of the affected nodes with 
random nodes of the network

Figure 1c: Greedy rewiring (B) of  
affected nodes with a good 
neighbour of a random 
neighbour

Figure 1d: 2nd neighbour 
strategy (C), affected nodes 
rewire each others



4. Results
In this section we will present each one of the strategies considered, i.e. A) random rewiring, B) 
greedy rewiring and C) second-neighbour strategy, testing for each strategy the random and scale-
free structures. In each case, we will observe the consequences of both failure and attack scenarios.

A) random rewiring 

The first strategy (A) is the most simple one: affected nodes rewire to a randomly chosen 
node of the network. In a real network, it is usually not relevant as it would imply that each node of 
the network would know the entire network in order to choose a newer node to get linked to. The 
basic aim of this hypothesis is rather to take a null hypothesis for comparison with more reasonable 
assumptions.  More  concretely,  we  will  check  in  the  simulations  whether  or  not  the  network 
structure remains stable or if it  is perturbed and how. We will  also observe whether or not the 
network still exhibits a giant component along the attacks and we will measure the evolution of its 
size.

A.1) random graphs

A.1.a) Natural failure
In this case, as the deletion of nodes and the rewiring of links follow random processes, 

there is no collapse of the network and the size of the giant component remains constant along the 
simulation. Moreover, if the initial graph includes some isolated nodes, these latter can be chosen 
with a probability 1/N by the affected nodes as targets along the rewiring process, enabling them to 
become apart of the giant component. This explains why the ratio of the giant component grows to 
1 on the figure 2, meaning that all nodes are apart of the network.

A.1.b) Targeted attack
The attack process has the same consequences than the failure process we just described and 

the figure 3 shows a similar plot than on figure 2. Even if the removed nodes are preferentially the 
ones  with  a  higher  degree  (higher  degree  being  targeted  by the  attacks),  the  random structure 
ensures, at least in the beginning, quite an egalitarian distribution of the links in the network, i.e. all 
nodes have nearly the same degree. The random rewiring does not change the global distribution of 
links in the network, even under attacks. And therefore, the initial random graph remains random to 
this respect. To say it simple, it is only because nodes are approximately equals in terms of degree 
that attacks are not much efficient than failures on this topology, this conclusion was risen yet by 
Barabasi and Albert (2001). However, we have to mention that the characteristic distribution of 
random network (i.e. Poisson law) is slightly deformed, deleting the right part of the curve (those 
nodes being preferentially targeted by the attacks). It follows that the bell curve moved slightly to 
lower  degrees.  In  this  respect,  if  the  random  rewiring  conserves  the  qualitative  aspect  of  an 
egalitarian distribution, it does not conserve the characteristic distribution of a random network.

Figure 2: Random rewiring of  
random graph after failure

Figure 3: Random rewiring of  
random graph after attack



A.2) scale-free networks (Fred : Arrêté là)

A.2.a) random failure
Barabasi and Albert (2002) demonstrated the robustness of scale-free networks to random 

failures and their higher sensitivity to targeted attacks when compared to random networks. From 
our experiments, we observed the same robustness feature to random failures when adding random 
rewiring (see Figure 4). Moreover, concerning the degree distribution, starting with a power-law 
one, the addition of random rewiring tends to give the networks some random graph characteristics 
(i.e. the power-law tends to be transformed step by step into a bell curve that is characteristic of a 
Poisson law).

A.2.b) targeted attack
According  to  our  experiments,  a  random  rewiring  strategy  enables  to  keep  the  giant 

component's size quite constant, as shown on figure 5. However, and just as for random failures, the 
power-law distribution tends to disappear to the favour of a distribution that corresponds more to a 
random network. It could be interesting to study more precisely how the structure evolves and to 
see how it impacts others indicators, we do not detail this point in this paper.

B) greedy strategy

The preceding  random rewiring strategy gives  good results,  keeping  the  whole  network 
connected. However, it seems to be a difficult strategy to implement for real network as it implies 
that each node knows all the other nodes of the network in order to choose another one of them 
randomly. In this respect a more local strategy would be a more feasible solution.
The so-called greedy strategy (B), that we will present now is a local strategy and therefore a more 
plausible one to be implemented. The greedy strategy acts simply as follows. Knowing only its 
immediate  neighbourhood,  an  affected  node  tends  to  rewire  to  a  node  in  this  proximate 
neighbourhood. To do that, let's assume that the affected node chooses one of its random neighbours 
and then chooses the best neighbour (the one with the highest degree) of this selected neighbour.

B.1) random graphs

 B.1.a) random failure
  The figure 6 shows that the size of the giant component quickly goes down. On the network, 
it is the result of the burst of it. It can be easily explained because the greedy strategy is not able to 
reconnect two separate components. So if a node with a high betweenness is chosen, the network 
will inevitably split and never reconnect, then this rapidly lowers the size of the largest component. 
And more, after a certain time, we can see a brutal drop. This is explained by the topology of the 

Figure 4: Random rewiring of scale-
free network after failure

Figure 5: Random rewiring of scale-
free network after attack



resulting network. As we can't reconnect separate components, after numerous failures, the network 
is split into several smaller graphs with a quite high clustering coefficient. So there is a higher 
probability to randomly choose a node with the higher betweenness and then split again a small 
graph into two part, accentuating again the collapse of the network.

 B.1.b) targeted attack
  As we can see on figure 7, it is the same as above except that there is a faster drop of the 
giant component size. This is because a important node of a network is often a node with a high 
betweenness so the separation of the network into two parts and more appears more rapidly.

B.2) scale-free networks

 B.2.a) random failure
  As for random graph, this strategy on scale-free prevents two different networks to connect 
themselves so, as soon as there is the suppression of a high betweenness node, the graph splits up. It 
is quicker than with a random graph because theses nodes are often hubs in scale-free networks and 
neighbours of a hubs have few connections each others. So in case of the suppression of a hub, with 
the greedy rewiring, they won't rewire each other and the network will split into several smaller 
graphs. The figure 8 shows the result as the giant component size falls.

B.2.b) targeted attack
  In this case, it is exactly the same explanation as above with a small addition. As we targeted 
high degree nodes first, the fall of the giant component size is more marked as shows the figure 9 
where we can see that, in a few step only, the network is nearly fully disconnected. Then, with time 
going on, as attacks still occur, the network become  composed of only isolated nodes.

Figure 6: Greedy rewiring of random 
graph after failure

Figure 7: Greedy rewiring of random 
graph after attack

Figure 8: Greedy rewiring of scale-
free network after failure

Figure 9: Greedy rewiring of scale-
free network after attack



C) second neighbour strategy

We just saw that the greedy strategy can't be a good one if the main goal is to keep the 
network connected. Indeed, in case of the remove of a node or a link with a high betweenness, there 
is a high probability to break the network into two parts or more. This probability is even stronger if 
we consider a scale-free network. To avoid this phenomenon, we investigate the second neighbour 
strategy (C) which is the rewiring of the affected nodes each others. Again, there is no need of the 
whole neighbour knowledge but only of the affected nodes, so this imply that nodes keep a list of 
their neighbours of their neighbours, i.e. their second neighbours, in order to connect with them if a 
neighbour disappears.

C.1) random graphs

 C.1.a) random failure
  The figure 10 shows there is a slow decrease of the size of the giant component due to a low 
separation rate of a little number of nodes, i.e. sometimes there is one or two nodes splitting from 
the network and never reconnect. On simulation, it  is relatively blatant that the topology of the 
network  tends  to  change  from  random  to  scale-free,  but  further  investigations  are  needed  to 
determine if we really obtains a scale-free distribution or a approaching one, and how it happens.
 

C.1.b) targeted attack
As for random failure, there is a slow decrease of the largest component size compared to 

the greedy strategy. However, the decrease is more marked than the one due to a random failure. We 
can explain it by the topology change of the network. As it tends to gain some scale-free properties, 
it becomes less resistant to targeted attack (Barabasi – 2000).

C.2) scale-free networks 

 C.2.a) random failure and targeted attack
  We can see on figures 12 and 13 that after a brutal decrease of the largest component size, 
there is a stabilization of the size for a while and then another brutal drop and stabilization. A scale-
free network is not strong versus targeted attack due to the hubs keeping a certain connection within 
the  network  so if  you  put  down a  hub,  you  destroy a  major  part  of  the  network.  The  second 
neighbour strategy tries to avoid this by rewiring the affected nodes each others. An other way to 
say it is that affected nodes try to replace by links  the node just removed. To go further, we can say 
that the hub removed is replaced by a set of nodes, its neighbours, with a relatively high clustering 
coefficient, and other nodes connected to this set. So it keeps a global scale-free topology with local 
cluster taking place of hubs. For that, targeting a good node of the network becomes less destructive 

Figure 10: 2nd neighbour rewiring of  
random graph after failure

Figure 11: 2nd neighbour rewiring of  
random graph after attack



than before and give levels where the networks is in a quite stable state because even if you remove 
a high degree node, we can assume that the others from the “set-hub” keep the connection with 
others nodes. The brutal decrease appears when the “set-hub” contains one or two nodes, so it is 
quite the same thing that the initial topology where when you delete an important node, even with 
the rewiring strategy,  you could split  important of the network from the largest  component.  An 
interesting point is that we have relatively similar plots, both with random failures and targeted 
attacks. So we can say that even under targeted attacks, the second neighbour strategy is able to 
keep a relatively large component and not destroying the whole network like the greedy strategy. 
So, even if it splits the network in some parts and in the very long term the networks collapse, this 
rewiring algorithm give times to find a response. Furthermore, what we can observe on simulation 
is  that  there is  not a single large component but several.  Indeed,  the network splitting globally 
results in a cut of the largest component in two components of equivalent size. So even if a node is 
not part of the largest resulting network, it is not isolated for all that.

5. Conclusion
In this paper, we have observed the now known results saying random graphs are relatively 

robust to both failures and attacks while scale-free networks are highly vulnerable to  attacks. 
Furthermore, we have observed some interesting results when affected networks do not stay passive 
and react to the suppression of nodes. According to this, we have settled up three strategies : A) the 
random rewiring, B) the greedy rewiring and C) the second neighbour rewiring. 

First, we have saw the random rewiring giving some good results, keeping the whole 
network connected. However, we can say it is a unmanageable strategy for real networks because it 
implies that each node have a full knowledge of all the other nodes in order to randomly choose one 
of them and connect with it.

Second, we have observed that the greedy rewiring has a major drawback. Indeed, if the 
suppressed node is the last link between two sub-graphs, the greedy rewiring will not avoid the 
separation. And if it is destructive against scale-free networks, we have saw that random graphs 
have not a really better resistance to this. In the end, the network consists in a set of isolated nodes 
with no links.

Third, we can say that the second neighbour rewiring seems to be a good strategy. As it tries 
to replace the deleted nodes by links, it gives better results than the greedy strategy, avoiding the 
full destruction of the network. Furthermore, it is more interesting than random rewiring because it 
is a relatively local strategy and it tends to keep the initial topology of the affected network, and it 
seems to leave less isolated nodes. And if scale-free networks fall down, we have observed levels, 
giving time to take arrangements to counter failures and / or attacks. 

Figure 12: 2nd neighbour rewiring of  
scale-free network after failure

Figure 13: 2nd neighbour rewiring of  
scale-free network after attack



It can be interesting to conduct more numerical experiments to find out if the second 
neighbour strategy is a good one for real networks, meaning networks with a very high number of 
nodes (hundred of thousands). Also, it is important to take a look to the evolution of the other 
structural properties of a network, like the path length or the clustering coefficient, allowing to see 
if the second neighbour algorithm affects these or not, and how, and saying if it is a good rewiring 
according to the desired characteristics of the initial networks. And, finally, we can assume that 
nodes are not the only possible target for failures or attacks and defensive strategies are adaptable to 
link failures and or attacks. An interesting question is if a strategy is effective for both nodes and 
link suppression or if it gives totally different results.
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