
Dynamics of Relative Agreement in Multiple
Social Contexts

Abstract. In real world scenarios, the formation of consensus is an auto-
organisation process by which actors have to make a joint assessment
about a target subject being it a decision making problem or the for-
mation of a collective opinion. In social simulation, models of opinion
dynamics tackle the opinion formation phenomena. These models try
to make an assessment, for instance, of the ideal conditions that lead an
interacting group of agents to opinion consensus, polarisation or fragmen-
tation. In this paper, we investigate the role of social relation structure
in opinion dynamics using an interaction model of relative agreement.
We present an agent-based model that defines social relations as mul-
tiple concomitant social networks and apply our model to an opinion
dynamics model with bounded confidence. Moreover, we discuss the in-
fluence of complex social network topologies that capture the complexity
of real-world social scenarios where actors interact in multiple contexts
simultaneously. The paper builds on previous work about social space
design with multiple contexts and context switching, to determine the
influence of such complex social structures in a process such as opinion
formation.
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1 Introduction

Understanding trend and opinion spreading or consensus formation processes
within a population is fundamental to construct coherent views and explanations
for real-world events or phenomena. Examples of such processes include: a group
of experts having to make a joint assessment of a certain policy, the impact of a
viral marketing campaign conducted using on-line social media or even, in the
context of economics and politics, an issue that influences the development of
opinion dynamics studies, the voting problem. This last problem was investigated
in an early model proposed by Herbert Simon [21].

Formal opinion dynamics models try to provide an understanding if not an
analysis of opinion formation processes. An early formulation of these models was
designed to comprehend complex phenomena found empirically in groups [10]. In
particular, the work on consensus building in the context of decision-making was
initialised by De Grout [8] and Lehrer [15]. Empirical studies of opinion formation
in large populations have methodological limitations, as such, we use simulation,



in particular Multi-Agent Simulation (MAS), as a methodological framework
to study such phenomena in a larger scale. Most opinion dynamics simulation
models are based either on binary opinions [11, 3] or continuous opinions [7, 12,
6, 13]. In these models, agents update their opinions either under social influence
or according to their own experience.

For a detailed analysis over some opinion dynamics model analytical and
simulation results, the reader can refer to [12]. For a multidisciplinary state-of-
the-art on opinion dynamics the reader can refer to [25].

In opinion dynamics models (in particular) and Agent-Based Social Simu-
lation (ABSS) (in general), agent interactions are guided by social space ab-
stractions. In some models, dimensionality is irrelevant. Typically, all agents can
participate in interactions with all other agents, and the notion of physical space
plays no role in the simulation. Axelrod, for instance, takes a different approach
in his model of dissemination of culture [4] and represents agents in an abstract
bi-dimensional grid which provides structure for agents to interact with each
other. In Weisbuch’s bounded confidence model with social networks [24], the
agents are bound by different network topologies. This last model is an example
where the structure in social relations not only filters the interactions the agents
can engage in, but also influences the dynamics of opinion formation.

In real-world scenarios, actors engage in a multitude of social relations dif-
ferent in kind and quality. Most ABSS models don’t explore social space designs
(such as social networks) that take into account the differentiation between co-
existing social worlds. Modelling multiple concomitant social relations allows for
the comprehension of a variety of real-world dynamics such as, e.g., the impact
of on-line social media political campaigns or what it means socially to lose a
job. Furthermore, such complex social structures are the basis for the formation
of social identity [18, 9] and play a decisive role in auto-organised processes such
as consensus formation [3, 17] or segregation [19, 20, 17].

This paper is aimed at extending the line of research regarding the represen-
tation of social spaces with explicit multiple concomitant social relations. This
work, described in [2, 3, 17] presents interesting insights on how different complex
social relation topologies influence consensus formation dynamics. We apply the
notions of multiple social contexts to a model of continuous opinion dynamics
called Relative Agreement (RA) model [6]. This model is an extension of the
Bounded Confidence (BC) model [14, 7, 12].

The work in [2, 3, 17] explores multiple contexts applied to a simple game
of consensus that can be seen as a simple binary opinion dynamics models. It
is found that by considering coexisting social relations, the agent population
converges to a global consensus both faster and more often. This happens due
to what we call permeability between contexts [2]. Permeability in multiple so-
cial contexts is created due to both social context overlapping [2] and context
switching [3]. Context switching models the existence of multiple distinct social
relations from which each social agent switches to and from at different instances
in time. As an example, take for instance the work and family relations.



As the RA model [6] is considerably more complex than the simple interaction
game considered in [2, 3, 17], we perform a series of experiments to determine if
this social space modelling methodology exerts a similar influence in this model.
This will allow to understand if the multiple-context models present properties
that are transversal to the interaction processes to which they are applied.

The paper is organised as follows. In section 2 we present the opinion dy-
namics model along with our social space design with multiple concurrent social
networks. Section 3 describes the model of experiments presenting multiple simu-
lation scenarios and indicators for the observations. Section 4 presents the results
and the corresponding discussion. Finally, in section 5 we summarise our findings
and propose some future work guidelines.

2 The proposed model

This section describes our proposed simulation model. This new model integrates
both the multi-relational modelling approach [2, 3] and the Relative Agreement
(RA) interaction model [6]. We start by describing the multi-context model
with context switching [3] and the continuous opinion dynamics model [6]. We
then present the resulting ABSS model of continuous opinion formation with
uncertainty, multiple social contexts and context switching dynamics.

2.1 A model of context switching

The multi-context approach [2, 3, 17] considers a multitude of concomitant social
relations to represent the complex social space of an agent. This setting can be
seen in a simulation as a n-dimensional scenario where each dimension surface
represents a different social relation (see figure 1) simulated with a social network
model. Agents belong to distinct contexts (neighbourhoods) in these multiple
relations.

Fig. 1: Multiplex social network structure forming the social space
for our models of multiple concurrent social relations.

In the particular model of context switching [3], a population of N agents
populates multiple social networks. Each agent is active only in one context
at a time. In each simulation step, the agents select a neighbour from their
current context and update their opinion according to some rule. At the end



of each interaction an agent switches to a different context with a probability
ζc. For the sake of simplicity, the ζc probability is a parameter associated with
each context c and it is valid for all the agents in that context. This allows for
modelling of time spent in each context, in an abstract way. We can think of
context switching as a temporary deployment in another place, such as what
happens with temporary immigration.

2.2 Relative agreement interaction

We now describe the model of continuous opinion dynamics with relative agree-
ment [6]. In this model, each agent i is characterised by two variables, its opinion
xi and its uncertainty ui both being real numbers. The opinion values are drawn
from a uniform distribution between −1 and 1.

This model can be seen as an extension of the Bounded Confidence (BC)
model [14, 7, 12]. In the BC model, the agents have continuous opinions and the
interactions are non-linear. The agents only exert influence on each other if their
opinions are within a certain fixed threshold. The threshold can be interpreted
as an uncertainty, or a bounded confidence, around the opinion [6]. It is assumed
that agents do not take into account opinions out of their range of uncertainty.

The RA model differs from the BC model in the fact that the change in
an opinion xj of an agent j under the influence of an agent i, is proportional
to the overlap between the agent opinion segments (the agreement), divided by
the uncertainty of the influencing agent uncertainty ui. Another difference is
that the uncertainty is not fixed, the value of uj is also updated using the same
mechanism. The opinion and uncertainty updates are illustrated in figure 2.
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Fig. 2: Agent i (with the opinion xi and the uncertainty ui) influences
agent j (with the opinion xj and the uncertainty uj). In this case, hij
is the overlap between the agents and 2ui−hij is the non-overlapping
part. On the left is the representation of the opinion and uncertainty
of agent j, on the right, the dashed lines represent the position of the
segment before the interaction and the plain lines, the final values
for the these two properties [6].



The opinion overlap hij is given by:

hij = min(xi + ui, xj + uj)−max(xi − ui, xj − uj) (1)

The opinion and uncertainty values are updated according to the following equa-
tions. As an example, the opinion xj and the uncertainty uj of agent j is updated
according to equation 2 and 3 respectively, if hij > ui.

xj
′ = xj + µ

(
hij
ui
− 1

)
(xi − xj) (2)

uj
′ = uj + µ

(
hij
ui
− 1

)
(ui − uj) (3)

Where the µ is a constant parameter which amplitude controls the speed of the
dynamics. For more details, refer to [6].

2.3 Context switching with relative agreement

The proposed model integrates both the context switching (described in section
2.1) and the relative agreement models. In this model, agents are embedded
in static social networks, interact using the opinion dynamics rules set by the
RA model described in the previous section 2.2, and switch contexts (the agent
neighbourhood in the network) according to a probability ζCk

, associated with
each context Ck.

Our proposed simulation model behaves as follows. Consider a population of
N agents distributed by M different social networks. The networks are static
throughout the simulation. On each network an agent can be either active or
inactive being that an agent can only be active in one network (context Ck) at
a time.

On each simulation cycle, the N agents are schedule to execute their be-
haviour sequentially and in a uniform random order. The behaviour of the cur-
rent agent i, located in the context Ck can be described as follows:

1. Choose an available neighbour (agent j) from the current context at random;

2. Update agent i and j opinions and uncertainties according to the equations
2 and 3 from the previous section 2.2;

3. Switch to a random distinct context Cl (Cl 6= Ck) with a probability ζCk
,

which is a static parameter with different values for each context / network;

Note that although static complex social network models allow us to create
abstract representation for social contexts can be relatively stable if we consider
short to moderate periods of time, our social peers are not always available at
all times and spend different amounts of time in distinct relations.



3 Experiment Design

The simulation experiments were created using the MASON framework [16] and
executed in a grid environment described in [17]. In each experiment, a pop-
ulation of 300 agents starts with random opinions with values drawn from a
uniform distribution between −1 and 1. They interact until 3000 cycles pass or
the opinion values stabilise. We perform 30 simulation runs for each parameter
combination. We have two main goals with these experiments. The first is to
analyse the dynamics of opinion formation under the model of relative agree-
ment described in the previous section. This model combines both the relative
agreement interaction rules and the context switching social spaces with mul-
tiple contexts. The second goal is to analyse the influence of different network
topologies in the formation of consensus in multi-agent societies.

In this paper, we present a set of experiments focused on the analysis of
the dynamics induced by the context switching mechanism. We spanned the
switching parameter (ζCi) from 0 to 1 in intervals of 0.05 with two contexts.
We also use different network topologies in these contexts. We then observe how
different combinations of context switching probabilities and network structures
affect the speed of convergence to stable opinion values.

The initial uncertainty parameter is set to U = 1.4. According to the previous
work with relative agreement in single social networks [1], this value guaranteed
the convergence in one central opinion value. We chose this parameter value to
ensure that interactions are not heavily restricted by the uncertainty early in a
simulation run. We want to study the influence of different network topologies
so these are the structures that intrinsically guide such interactions early on.

We tested our model with three network models: regular networks, with the
same number of connections for each agent; scale-free network, generated using
the Barabasi-Albert (BA) model [5]; small-world network, generated using the
Watts & Stroggatz (WS) model [23].

4 Results and discussion

In this section we present and discuss the experimental results. We show how
different values of switching between contexts influence the speed of convergence
to stable opinion values. We also explore the interplay between the model of
relative agreement presented in section 2.3 and different network topologies.

4.1 Context switching with regular networks

In this set of experiments, we focus on the analysis of how the switching prob-
abilities affect the opinion formation game. To do this, we construct several
simulation scenarios where agents interact in two social relations. Each relation
is associated with an abstract network model and has a context switching value
ζCi

. This value corresponds to the probability of switching from a relation to
another (as described in section 2.3).



We maintain homogeneous network structures and span the context switching
values (ζCi

) from 0 to 1 in intervals of 0.05. Figure 3 depicts a landscape for
this parameter span. In this case we create two contexts each one with a k-
regular network with k = 30. Regular networks offer an easy way to model highly
clustered populations of agents. For this type of networks each node is connected
with 2k other nodes, where k is a parameter of the generative procedure. Regular
networks also provide a convenient way to observe the influence of neighbourhood
size in the opinion stabilisation process as the connectivity structure is equal for
all the agents. They can also serve as models for highly clustered communities
(although its structure is far from real world scenario topologies [23, 5]).

Switc
hin

g 
fo

r C
on

te
xt 

1

0.0
0.2

0.4

0.6

0.8

1.0

Switching for Context 2

0.0
0.2

0.4

0.6

0.8

1.0

 A
vg. E

ncounters 

2e+05

4e+05

6e+05

8e+05

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

 1e+05 
 2e+05  3e+05  4e+05 

 5
e+

05
 

 6
e+

05
 

 7
e+

05
 

Fig. 3: Meetings to achieve convergence to stable opinion values with
two 30-regular networks and ζ ∈ [0, 1].

In figure 3, we see that small probabilities (0 ≤ ζCi ≤ 0.1 proximately) in
one of the contexts lead to a large numbers of encounters necessary to stabilise
the opinion values. In extreme cases, stabilisation is never reached. We can also
observe the configuration (ζC1

, ζC2
) = (0, 0) is slightly better in these cases.

This is because agents are isolated in each context and thus the opinions evolve
separately the same way they would if the agents were placed within a single
network. Also note that although not depicted in the figure, in this last case the
opinions also evolve to two separate values.

Figure 4a shows a zoom in the previous landscape (figure 3) with the ζ being
between 0.2 and 1. This is the optimal zone in terms of encounters necessary to
achieve stable opinions. Here we can see that the optimal values for switching
with this regular configuration lies within ζCi ∈ [0.8, 1] proximately. Moreover,
if one of the contexts has a high switching probability, the other context should
have a similar level of switching.

Having one social relation with high switching while having the second with
a low probability leads to a scenario where agent spend most of the time in one
context but can still switch to another one. While they spend considerately less
simulation time in this second context, this is enough to destabilise the opinion
formation process.

In the next experiment we created a scenario to observe the effects of different
connectivity levels for each context. Figure 4b depicts the span of the switching
probability within the values ζ ∈ [0.2, 1]. The first context is now a 10-regular
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(a) networks: 30-regular / 30-regular
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(b) networks: 10-regular / 50-regular .

Fig. 4: Meetings to achieve convergence to stable opinion values with
for ζ ∈ [0.2, 1]. In the first landscape (figure 4a) we use 30-regular
networks in both contexts. In figure 4b we use a 10-regular and a
50-regular for context 1 and 2 respectively.

network (each agent has 20 neighbours) while the second is a 50-regular network
(each agent having a total of 100 neighbours).

As we can see the asymmetry in the connectivity has clear effects in the
convergence to stable opinion values. In this case, we find that if an agent stays
more time (ζ ∈ [0.2, 0.3]) in the context with the lowest connectivity it seems to
be important to switch less frequently from the highly connected and clustered
social layer. Similarly to what was found in [17], a possible explanation is that in
larger neighbourhoods, the probability of performing encounters with an agent
with a very different opinion early in the simulation is considerable. The impact
is clearly visible as disturbance in the convergence to stable opinions.

4.2 It’s a small world after all

One evidence of the importance of network structure can be found in the next re-
sults. We conducted experiments using the Watts & Strogatz (WS) model [23] to
generate networks with small-world properties. These topologies are constructed
by rewiring regular networks, introducing increasing amounts of disorder. More-
over, we can construct highly clustered networks, like regular lattices, yet with
small characteristic path lengths, like random graphs. They are called small-
world by analogy with the phenomenon [22], popularly known as six degrees of
separation. This phenomena refers to the idea that everyone is on average ap-
proximately six steps away, by way of introduction, from any other person on
Earth.

Figure 5 shows the results for a set-up with two WS networks with an initial
k = 30 and a rewiring probability of p = 0.1 and p = 0.6. The value of p = 0.1
for the rewiring, introduces enough disorder in the network to lower the average
path length without sacrificing the clustering coefficient too much. In figure 5a,
we can see that the influence is very similar to the previous results with regular
networks (see figure 4a) but the reduction in the path length causes the model
to converge more rapidly for higher switching probabilities.
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(a) WS network with p = 0.1.
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(b) WS network with p = 0.6

Fig. 5: Meetings to achieve convergence to stable opinion values for
two Watts & Strogatz small-world networks generated with initial
degree k = 30 and rewiring probability p = 0.1 (5a) and p = 0.6
(5a). The switching values are ζ ∈ [0.2, 1].

When we increase the level of disorder, for instance, to a value of p = 0.6, the
network clustering coefficient is significantly reduced, while maintaining the low
average path length. The results for this are depicted in figure 5b. Although the
switching probability seems to have a more complex influence on the speed of
convergence, globally, the number of encounters seem to be almost homogeneous
throughout the switching vales ζCi > 0.3. Also, as the number of necessary
encounters is a slightly lower, it seems that high values of switching are more
important when the networks possess highly clustered nodes.

4.3 Context switching with scale-free networks

In this section we briefly discuss the results for the experiments with the scale-
free network models. We performed an experiment with two contexts each one
with a scale-free network. In this network, each node has a minimum connectivity
of 1, meaning that the preferential attachment mechanism only actuates once
each time a node is added to the network. This thus generates a network with a
forest topology.

Figure 6 shows that although the majority of nodes has a very low connec-
tivity (see, [5]), the small-world characteristics of this scale-free model provide
means to achieve convergence to stable opinion values. This happens for switch-
ing probabilities approximately within ζCi

≥ 0.1, much like what happens in the
previously described experiments.



Switc
hin

g 
fo

r C
on

te
xt 

1

0.0
0.2

0.4

0.6

0.8

1.0

Switching for Context 2

0.0
0.2

0.4

0.6

0.8

1.0

 A
vg. E

ncounters 

2e+05

3e+05

4e+05

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

 150000 

 150000 

 2e+05  250000  3e+05 

 350000 
 4e+

05 

Fig. 6: Meetings to achieve convergence to stable opinion values for
two scale-free networks with minimum degree k = 1. The switching
values are ζ ∈ [0, 1].

4.4 Results with a single network

For result comparison purposes we performed a series of experiments with single
networks. Using a parameter k with the values k = {1, 2, 3, 4, 5, 10, 20, 30, 40, 50},
we performed experiments with single k-regular, WS small-world and BA scale-
free networks (see figure 7). For the regular networks the parameter k is the
previously described connectivity with each agent having 2k neighbours. For the
small-world networks, this parameter is used to construct the initial k-regular
structure, we used a rewiring probability p = 0.1 to keep these network highly
clustered. For the BA scale-free networks the k is the minimum degree each
agent will have upon generating the network instance.

Fig. 7: Meetings to achieve convergence to stable opinion val-
ues with a single network context (without switching). Results
for k-regular, WS small-world with p = 0.1 and BA scale-free
networks.

Note that in figure 7, the maximum value of encounters is limited by the
maximum number of simulation cycles allowed. In this case, the models that
display the maximum number of encounters did not converge to stable opinion
values.



In figure 7 we can see that for k ≥ 2, scale-free networks seem to outperform
the other models in terms of convergence speed. Also note that these results
confirm that the switching mechanism allows the opinion formation process to
converge both faster and more often. As an example, consider the results for
scale-free networks (figure 6) where convergence was made possible by exposing
the agents to two distinct contexts.

The results in this paper show that the usage of different network model
structures plays an important role when modelling opinion or consensus forma-
tion processes. Context dynamics seems to be an advancement as a modelling
methodology for complex real-world scenarios and has a deep influence in how
simulation models behave. These are key points discussed both in the work of
Antunes et al. [3, 17] and Amblard et al. [6, 1] from which this work stems from.

5 Conclusion and future work

The results in this paper corroborate the fact that multiple context structures
play an important role in processes such as opinion formation. While complex
network models are good for modelling real-world social relation scenarios, single
network structures fail to capture the complexity of the multitude of existing re-
lations. Social decision making and the phenomena associated with this processes
are influenced in different ways by distinct kinds of social relations. Examples of
this are found in real-world events such as contemporary political or marketing
campaigns.

The model here presented, while abstract by nature, can unveil interesting dy-
namics that should be taken into account when modelling complex social spaces
for simulation models. The switching probability also introduces a way to model
interaction temporal dynamics by allowing the modelling of time agents dedicate
to different social contexts and how this affects the formation of opinions.

For future work, we will extend the presented exploration to include hetero-
geneous context configurations, combining different social network models. We
also consider to explore scenarios where the uncertainty is heterogeneous [1].
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